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AEOLIAN TONES OF A HONEYCOMB LATTICE CELL

UDC 517.947+533.6.011.7+534.14+534.2A. I. Makarov

Aeroacoustic resonant oscillations (aeolian tones) are studied for flow past two plates forming a cross
in a square cross section channel. Possible oscillation modes are classified on the basis of admissible
symmetry groups and the existence of the modes is proved. The infinite linear system of equations
for these modes obtained by the sewing method was simplified and studied numerically. Curves of
eigenfrequency versus plate length are constructed. The form of the eigenfunctions is studied.

1. Formulation of the Problem. A square cross section channel is considered. After the variables are
made nondimensional by the formulas [1]
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(H is the height of the channel, c is the speed of sound in the medium, ω is the circular frequency of the oscillations,
and U is the flow velocity; prime denotes dimensional variables), the height and width of the channel become equal
to unity (Fig. 1). Two identical perpendicular plates of length b and unit width are placed in the channel. The line
of intersection of the plates halves them. The coordinate origin is at the center of the plates, B is the boundary of
the channel, Γ are the plate profiles, Ω is the region occupied by a gas, and Ω′ = Γ ∪B.

A homogeneous flow moves at velocity U in the channel. The flow past the plates can give rise to resonant
aeroacoustic oscillations due to the formation and shedding of ordered vortical structures from the plate edges. The
solution of the linearized equations of motion for the gas can be represented by the way sum of vortical and acoustic
modes in the region occupied by the gas [2]. This representation does not hold only at the vortex shedding edge [3].
It can be assumed that the unknown singularity at the shedding edge is described by a vortical mode, the acoustic
oscillations are due only to a vortical mode, and the effect of acoustic waves on the sound source should be taken into
account only for the gas flow regimes leading to acoustic resonant phenomena [3]. In a coordinate system attached
to the plates, the acoustic and vortical oscillations are steady in time with a certain ordered vortical structure [3].

Unperturbed acoustic oscillations in the coordinate system OXY Z (Fig. 1) are described by the potential
u(x, y, z) of the acoustic perturbation of the main gas flow velocity, which should satisfy the following system of
equations [1, 3]:

∆u+ λ2u = 0 in Ω,
(2)

∂u

∂n
= 0 on B ∪ Γ,

∫
Ω0

(
u2 + (∇u)2

)
dΩ <∞ ∀ Ω0 ⊂ Ω.

Below, the problem (2) will be called the NO problem (natural oscillation problem). The formulation of the problem
is discussed in [3, 4].

Honeycomb lattices are widely used in aerodynamics to straighten gas flows. The structure studied in the
present paper simulates a unit cell of a honeycomb lattice for plates.

The main difficulty of the problem is that the discrete spectrum of the problem is embedded in the absolutely
continuous spectrum of the operator −∆, which occupies the nonnegative part of the real axis.
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Fig. 1. Parameters of the channel and plates: (a) the section along the channel;
(b) the cross section.

TABLE 1
One-Dimensional Representation of the Group D4

Transformation ψ1 ψ2 ψ3 ψ4

rk 1 1 (−1)k (−1)k

srk 1 −1 (−1)k (−1)k+1

2. Classification of Possible Natural Oscillations. Because of the symmetry of the problem, the space
of admissible solutions can be restricted. In this space, the origin of the absolutely continuous spectrum of the
operator −∆ is located to the right of the zero point.

If the natural oscillations are even with respect to the variables y and z, then the solution and its derivative
do not suffer discontinuity on the planes OXZ and OXY , in which the plates are located. Therefore, the plates do
not influence the oscillations, i.e., such oscillations should exist in the channel in the absence of plates. However,
this is impossible because in this case natural oscillations that are even with respect to the variables y and z do not
occur.

Oscillations that are even with respect to one plate and odd with respect to the other plate are described
by the problem with one plate in a channel considered in [4].

The cross section of the structure admits symmetry (Fig. 1b) described only by the dihedral group D4 and
the group C4 [5] (the remaining groups describing the symmetry admitted by the structure are only subgroups of
the groups D4 and C4).

The generating elements of the group D4 are rotation r through π/4 about the OX axis and mirror symme-
try s about the plane OXZ. The characters ψ1, ψ2, ψ3, and ψ4 of the one-dimensional (irreducible) representations
of the group D4 are present in Table 1 [5]. Each character defines the structure of one solution. Oscillations with
characters ψ1 and ψ3 correspond to oscillations that are even with respect to the variables y and z. As shown above,
such oscillations cannot exist.

The group C4, which describes rotational symmetry about the OX axis, defines the representation of the
eigenfunctions in the form of Rayleigh–Bloch waves for j = 0, 1, 2, and 3: C4〈u(x, y, z)〉 = exp (iπj/2)u(x, y, z).
For j 6= 0, Rayleigh–Bloch waves describe traveling waves in the plane OY Z with a phase shift of exp (iπj/2) at the
points (x, y, z) and (x,−z, y). The cases j = 0 and 2 are already considered in the one-dimensional representations
of the group D4. From a physical viewpoint, the traveling modes with j = 1 and j = 3 differ only in propagation
direction (counter-clockwise and clockwise, respectively, in the plane OY Z), i.e., these oscillations should correspond
to identical frequencies.

The problem possesses mirror symmetry about the plane OY Z. Therefore, the space of admissible solutions
is represented as the direct sum of solutions that are even and odd with respect to the variable x. Below, even and
odd oscillations imply even and odd oscillations with respect to the variable x.

From the aforesaid it follows that there are three oscillation mode that differ from oscillations near one
plate in the channel [ignoring evenness (oddness) with respect to x]: 1) mode with the character ψ2 (α-mode);
2) Rayleigh–Bloch wave with j = 1 (β-mode); 3) mode with the character ψ4 (γ-mode).

We note that for α-modes, an absolutely continuous spectrum begins at the point 10π2, for β-modes, it begins
at the point π2, and for γ-modes, at the point 2π2. Below, σ2

0 denotes the beginning of a continuous spectrum.
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3. Form of Natural Oscillations with Allowance for Symmetry. For x > b/2, the region of the
channel is denoted by Ω1, and for x 6 −b/2, it is denoted by Ω6. For −b/2 6 x 6 b/2, the first, second, third,
and fourth quadrants in the plane OY Z are denoted by Ω2, Ω3, Ω4, and Ω5, respectively. In view of the symmetry
conditions of the problem, it suffices to specify the form of the solution only in the regions Ω1 and Ω2. We designate
these solutions by u1(x, y, z) and u2(x, y, z), respectively.

With allowance for symmetry, the α- and γ-modes have the form

u1 =
+∞∑
n,m

bn,m

[
sin (π(2n+ 1)y) sin (π(2m+ 1)z)

+ (−1)p sin (π(2m+ 1)y) sin (π(2n+ 1)z)
]

e−xγ(2m+1,2n+1),

u2 =
+∞∑
n,m

an,m

[
cos (2πny) cos (2πmz) + (−1)p cos (2πmy) cos (2πnz)

]{ cosh (−xγ0)
sinh (−xγ0)

}
,

(3)

where γ(m,n) =
√
π2n2 + π2m2 − λ2 and γ0 = γ(2n, 2m); for the α-modes, p = 1 and the summation begins with

n = 1 and m = 0 for n > m; for the γ-modes, p = 0 and the summation begins with n = 0 and m = 0 for n > m.
Here and below, the upper expression in braces corresponds to even modes and the lower expression to odd modes.

With allowance for symmetry, the β-modes have the following form (n > m and n+m is an odd number):

u1 =
+∞∑

n=1,m=0

bn,m

[
cos (πn(y − 1/2)) cos (πm(z − 1/2))

+(−1)ni cos (πm(y − 1/2)) cos (πn(z − 1/2))
]

e−xγ(m,n),

u2 =
+∞∑
m,n=0

am,n cos (2πny) cos(2πmz)
{

cosh (−xγ0)
sinh (−xγ0)

} (4)

(i is an imaginary unity).
For the α-, β-, and γ-modes, the NO problem is called the NOS problem (natural oscillation problem with

symmetry). We choose a cylindrical coordinate system {(ρ, ϕ, z): ρ > 0, −π 6 ϕ 6 π, 0 6 z 6 1} along the edge
of one of the plates.

Lemma 1. In the NO problem, the condition of finiteness of energy in the neighborhood of the plate

edge is equivalent to the conditions u(ρ, ϕ, z) ' d(z) + ρf(z) cosϕ in the middle of the plate edge, u(ρ, ϕ, z) '
d(z) +

√
ρ cos (ϕ/2)f(z) for ρ→ 0, and d(z) ∈W 1

2 (R) and f(z) ∈W 1
2 (R) at the remaining points of the edge.

Lemma 1 formulates conditions on the form of the solution of the NO problem that are equivalent to the
condition at the edge [6].

Direct replacement of Cartesian coordinates in (3) and (4) by cylindrical coordinates proves the following
lemma:

Lemma 2. The α- and γ-modes have finite energy in the neighborhood of the edge. For the β-mode, the

condition of finiteness of energy in the neighborhood of the edge is equivalent to the following relations (∀ k1 ∈ Z+):∑
k1>n

b2k1+1,n(−1)n e−bγ(2k1+1,2n)/2−i
∑
n>k1

b2n,2k1+1(−1)n e−bγ(2k1+1,2n)/2 = 0. (5)

4. Existence of Natural Oscillations. We assume that apart from the boundary conditions of the NOS
problem, for R > b/2, the Dirichlet condition u(±R, y, z) = 0 (DR) or the Neumann condition ux(±R, y, z) = 0
(NR) is satisfied. Furthermore, for R > b/2, the solution is equal to zero in the region Ω. NOS problems with
such conditions will be denoted by NOS (DR) and NOS (NR), respectively, and their eigenvalues by λDR and λNR,
respectively. From the “Dirichlet–Neumann bracket” principle, it follows that for all numbers R, the following
inequalities are valid [7]:

λkNR 6 λ
k
∗ 6 λ

k
DR (6)

(the superscript k denotes the eigenvalue number).
Remark 1. If the strict inequalities λDR < σ0 and 0 < λNR hold for some values R > b/2, the existence of

eigenvalues of the NOS problem follows from (6) [7].
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Remark 2. If R > b/2, then, by virtue of connectivity of the region and symmetry conditions, the solution
cannot be a constant, and, hence, 0 < λ1

NR.
Let ΩR = Ω ∩ {|x| < R}. As is known from the theory of variational methods [7],

(λDR)2 6
∫

ΩR

|∇u|2 dΩR

/ ∫
ΩR

|u|2 dΩR = µ2(R) < σ2
0 . (7)

Here |u| is the modulus of a solution of a NOS problem if the solution is a complex-valued function.
The function µ2(R) has the following asymptotic expansion in terms of R: σ2

0 + A/R + O(1/R2). It is
necessary to choose a function u(x, y, z) satisfying the DR condition so that the inequality µ2(R) < σ2

0 is satisfied,
i.e., the variable A is negative for this function.

The solutions of NOS (DR) and NOS (NR) problems are rather smooth, suffer discontinuity only on the
profiles, and can be written as u = u0 + ku1, where k is an arbitrary real number, u0 is a generalized eigenfunction
of the operator −∆ in the region ΩR with the condition DR corresponding to the beginning of the continuous
spectrum, and u1 is a function that is discontinuous on Γ, continuous in the regions Ωj (j = 2, . . . , 5), and equal to
zero in the regions Ω1 and Ω6. From this representation for the function u it follows that A = A(k) = A1k

2 +A2k,
and if A1 6= 0 and A2 6= 0, then k always exists such that A(k) < 0. Thus, the proof of the theorem of existence
of oscillations reduces to search for functions u1 with the required properties for each oscillation mode. The
corresponding functions are given below.

α-Mode of Oscillations. The continuous component is

u0 = (sin (3πy) sin (πz)− sin (πy) sin (3πz)) cos (πx/(2R)),

and the discontinuous component is u1 = k(y − z) cos (πx/b) in Ω2. From the asymptotic expansion (7) it follows
that A1 = (48b2 + π2 − 10π2b2)/(24b) and A2 = 1792b/(9π2).

β-Mode of Oscillations. The continuous component is

u0 = (sin (πy) + i sin (πz)) cos (πx/(2R)),

and the discontinuous component is u1 = k cos (πx/b) in Ω2. From the asymptotic expansion (7) it follows that
A1 = −π2(b2 − 1)/(2b) and A2 = −8b.

γ-Mode of Oscillations. The continuous component is

u0 = sin (πz) sin (πy) cos (πx/(2R)),

and the discontinuous component is u1 = k cos (πx/b) in Ω2. From the asymptotic expansion (7) it follows that
A1 = 2π2(1− 2b2)/b and A2 = −128b/π.

Thus, we proved the following theorem:
Theorem 1. In a square cross section channel, natural oscillations of the type of α-, β-, and γ-modes near

a unit cell of a honeycomb lattice of plates exist always.

Similarly [3], using inequality (6) for R = b/2 and the representations of solutions (3) and (4), we prove the
following theorems:

Theorem 2. The oscillation frequencies of the α-modes belong to the interval (2π,
√

10π).
Theorem 3. The number K of the oscillation modes located below σ0 satisfies the following inequalities

(only integer solutions are used):
— for α-modes, max (1,

√
6b− 1) 6 K <

√
6b+ 1;

— for β-modes, max (1,
√

2b− 1) 6 K <
√

2b+ 1;
— for γ-modes, max (1, b− 1) 6 K < b+ 1.
It should be noted that for all b, each inequality in the theorem has not more than two integer solutions.
5. Numerical Investigation of Natural Oscillations. In order that a function

u(x, y, z) =

{
u1(x, y, z) in Ω1,

u2(x, y, z) in Ω2

be a solution of the NOS problem, the conditions of continuity of the solution and its normal derivative should be
satisfied on the boundary between the regions Ω1 and Ω2 (sewing method) [8]

u1 = u2,
∂u1

∂x
=
∂u2

∂x
on ∂Ω1 ∩ ∂Ω2. (8)
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Conditions (8) imply that a function u(x, y, z) defined in the regions Ω1, . . . ,Ω6 is a weak solution, which, by virtue
of the theory of elliptic equations, is a strong solution of the NOS problem.

Multiplying relation (8) by cos (2πn1y) cos (2πm1z) and integrating the variables y and z from 0 to 1/2, we
obtain two relations. Substituting one of these relations into the other and simplifying the result, we obtain the
equation

1/2∫
0

1/2∫
0

({
tanh (−xγ1)
coth (−xγ1)

}
u1 −

1
γ1

∂u1

∂x

)
cos (2πm1z) cos (2πn1y) dy dz = 0,

where γ1 = γ(2m1, 2n1) and x = b/2. The form of the function u1(x, y, z) and the choice of the variables m1 and n1

depend on which of the three cases is considered.
For the α and γ-modes, we obtain the system

+∞∑
n,m

bn,m e−bγ/2
(

(γ1 + γ) ebγ1/2 +(−1)l(γ − γ1) e−bγ1/2
)( π(2n+ 1)

(π(2n+ 1))2 − (2πn1)2

× π(2m+ 1)
(π(2m+ 1))2 − (2πm1)2

+ (−1)p
π(2n+ 1)

(π(2m+ 1))2 − (2πn1)2

π(2m+ 1)
(π(2n+ 1))2 − (2πm1)2

)
= 0, (9)

where the summation begins with n = 1 and m = 0 for n > m and p = 1 for α-modes and with n = 0 and m = 0
for n > m and p = 0 for γ-modes. The variables n1 and m1 vary in the same ranges as the variables n and m;
γ = γ(2n+ 1, 2m+ 1).

For the β-modes, we have the following system (n > m and n+m is an odd number):
+∞∑

n=1,m=0

bn,m e−bγ(n,m)/2
(

(γ1 + γ) ebγ1/2 +(−1)l(γ − γ1) e−bγ1/2
)

×
(
g(n, n1)g(m,m1) + (−1)mig(m,n1)g(n,m1)). (10)

Here n1 and m1 ∈ Z+ and g (n, n1) =

1/2∫
0

cos (πn(y − 1/2)) cos (2πn1y) dy.

In systems (9) and (10), the number l is even (odd) for even (odd) oscillations, respectively. The summation
is taken over the subscripts m and n, i.e., the sums in the equations are double. These sums were reduced by two
methods. In the first method, we used square partial sums, and in the second method, triangular partial sums
based on Cantor numbering of pairs of eigenvalues [9]. The Cantor numbering of pairs of eigenvalues is a bijective
function C : Z2

+ → Z+. To solve the problem (2), it is necessary to use a modification of this mapping because in
the modes considered, the set of subscripts of the coefficients is not the set Z2

+ but its subset.
According to Lemma 2, for the α- and γ-modes, no additional relations are required to satisfy the condition

of finiteness of energy in the neighborhood of the edge, and for the β-modes, system (10) should be solved together
with relations (5).

Numerical investigation of systems (9) and (10) shows that the first term in the sum corresponding to the
least values of the variables n1 and m1 makes a major contribution to the magnitude of the eigenvalue. They are
equal in both systems of equations. The first term is a simple approximation of the dispersion relation.

In the case of even α-, β-, and γ-modes, the first term is written as

tan (µ(λ)b/2) =
√
σ2

0 − λ2/µ(λ), (11)

and in the case of odd modes, it is written as

tan (µ(λ)b/2) = −µ(λ)/
√
σ2

0 − λ2, (12)

where µ(λ) =
√
λ2 − 4π2 for the α-modes and µ(λ) = λ for the β- and γ-modes; σ0 is the beginning of a continuous

spectrum. These formulas lead to the following statements for the α-, β-, and γ-modes:
Statement 1. For even (or odd) oscillations of one mode corresponding to frequency λ, the plate lengths b1

and b2 are linked by the relation |b1 − b2| = 2πl/µ(λ), where l ∈ N.
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Fig. 2. Oscillation frequency versus plate length for the α-, β-, and γ-modes.
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Fig. 3. Velocity and pressure fields for the α-mode (a), β-mode (b), and γ-mode (c).
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Statement 2. If the length b1 corresponds to even oscillations at frequency λ for one mode and the length

b2 corresponds to odd oscillations at the same frequency for the same mode, then, the relation |b1 − b2| = π(2l
− 1)/µ(λ) is valid (l ∈ N).

Using the first reduction method, we plotted curves of eigenfrequency versus plate length for α-, β, γ-modes
with 15, 30, and 15 series terms, respectively (Fig. 2). In Fig. 2, the even modes are denoted by the subscript 0,
and the odd modes by 1.

For rather great plate lengths, the eigenvalues calculated by formulas (11) and (12) differ from the eigenvalues
of the corresponding modes given in Fig. 2 by less than 0.1. Statements 1 and 2 are proved on the basis of (11)
and (12), which are first approximations of the dispersion relation. The data shown in Fig. 2 suggest that Statements
1 and 2 are generally valid.

In the case of α- and γ-modes with a close number of series terms in (9), the eigenvalues for the two reduction
methods differ in the 3rd or 4th decimal place. The number of coincident digits increases with increase in the number
of series terms. From the numerical experiments it follows that for the α- and γ-modes, the second reduction method
converges faster and requires smaller computation time. For the β-modes, both methods converge more slowly and
the number of coincident decimal places is smaller than that for the α- and γ-modes. In the first method, to obtain
eigenvalues with accuracy up to two decimal places, it suffices to use 21 terms of series (9) for the α- and γ-modes
and 28 terms of series (10) for the β-modes.

Figure 3 shows velocity and pressure fields for the α-, β-, and γ-modes in a cross section of the channel for
the function u1(x, y, z) with x = 2, b = 2, c = 330 m/sec, M = 0, H = 1 m, t = 0, and λ = 6.44, 1.31, and 1.36 for
the α, β-, and γ-modes, respectively.

Conclusions. It is shown that three types of natural oscillations near a honeycomb lattice cell exist, which
differ from the oscillation modes near one plate in a channel. These oscillations are proved to exist always. Curves
of oscillation frequencies versus plate length are constructed. The number of modes is evaluated for each oscillation
mode. Approximate relations linking plate lengths corresponding to the same frequency are derived.
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5. J. Serre, Représentations Linéaires des Groupes Finis, Paris (1970).
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